
MATH 245 S23, Exam 1 Solutions

1. Carefully define the following terms: odd, predicate.
Let n be an integer. We call n odd if there exists some integer m satisfying n = 2m + 1. A
predicate is a collection of propositions, indexed by one or more free variables, each drawn
from its domain.

2. Carefully state the following theorems: Division Algorithm Theorem, Conditional Interpreta-
tion Theorem.
The Division Algorithm Theorem says: For any integers a, b with b ≥ 1, there are unique inte-
gers q, r satisfying a = bq + r and 0 ≤ r < b. The Conditional Interpretation theorem states:
for any propositions p, q, we have p→ q ≡ q ∨ ¬p.

3. Without using truth tables, prove: For all propositions p, q, we have (p→ q)∧ (p→ ¬q) ≡ ¬p.

METHOD 1: Use Theorem 3.2, i.e. prove ` and a separately then combine to get ≡.
(a) Suppose first that (p→ q) ∧ (p→ ¬q) is true. By simplification twice, we get p→ q and
p→ ¬q. Two cases: Case p is false. Then ¬p is true, and we are done. Case p is true. Then
by modus ponens twice, we get both q and ¬q, which is impossible. Hence ¬p is true.
(b) Suppose now that ¬p is true. By addition q ∨ ¬p is true. By conditional interpretation
p→ q is true. We do this again: by addition (¬q)∨¬p is true, and by conditional interpretation
p→ ¬q is true. By conjunction (p→ q) ∧ (p→ ¬q) is true.

METHOD 2: Chain of logical equivalences. Each step must be justified for full credit.
(p→ q)∧(p→ ¬q) ≡ (q∨¬p)∧((¬q)∨¬p) ≡ ((¬p)∨q)∧((¬p)∨¬q) ≡ (¬p)∨(q∧¬q) ≡ (¬p)∨F
The first ≡ is from conditional interpretation twice. The second ≡ is from the commutativity
theorem twice. The third ≡ is from the distributivity theorem (backwards). The fourth ≡ is
from a theorem in the book (Thm 2.7f). Lastly, (¬p) ∨ F ` ¬p by disjunctive syllogism, and
¬p ` (¬p) ∨ F by addition.

METHOD 3: Working through four cases in detail using words (e.g. Suppose p is T and q is
F , then p→ q is F , etc.) is not technically using a truth table, so if all the details are present
this rather long solution would also earn full points. My mistake – instead of “without truth
tables” I should have written “using semantic theorems”.

4. Use a truth table to help prove: For all propositions p, q, we have (p→ q) ∧ (p→ ¬q) ≡ ¬p.
In this truth table, the third and seventh columns agree, which proves the desired conclusion.

p q ¬p ¬q p→ q p→ ¬q (p→ q) ∧ (p→ ¬q)

T T F F T F F
T F F T F T F
F T T F T T T
F F T T T T T

5. Let a, b, c ∈ Z. Suppose that a ≤ b and 0 ≤ c. Prove that ac ≤ bc.
Because a ≤ b, we must have b− a ∈ N0. Because 0 ≤ c, we must have c = c− 0 ∈ N0. The
product of two whole numbers is a whole number, so (b− a)c ∈ N0. Multiplying out, we get
bc− ac ∈ N0. Hence, ac ≤ bc.

6. For arbitrary n ∈ N0, calculate and simplify (n+2)!
(n+4)!

Using the definition of factorial twice, we have (n+2)!
(n+4)! = (n+2)!

(n+3)!(n+4) = (n+2)!
(n+2)!(n+3)(n+4) =

1
(n+3)(n+4) . If desired, this can be expanded as 1

n2+7n+12
.



7. Simplify the following expression as much as possible, where only basic propositions are negated.
Be sure to justify every step. ¬(p ∨ ¬(p ∨ ¬(q ∨ r)))

Applying De Morgan’s law to the outermost ¬, we get (¬p) ∧ ¬¬(p ∨ ¬(q ∨ r))).
Applying Double Negation, we get (¬p) ∧ (p ∨ ¬(q ∨ r))).
Applying De Morgan’s law to the innermost ¬, we get (¬p) ∧ (p ∨ ((¬q) ∧ (¬r))).
NOTE: Applying Disjunctive Syllogism would give (¬q)∧ (¬r); however, this is not logically
equivalent to the previous step, so is not a correct simplification. (¬p) ∧ (¬q) ∧ (¬r) would
be correct, but is tricky to justify.

8. Prove or disprove: ∀x ∈ Z, |4x− 9| > 1.

The statement is false, and requires a counterexample. Take x? = 2. We have |4x? − 9| =
|8− 9| = | − 1| = 1, and 1 6> 1. Hence for x? = 2, we have |4x? − 9| 6> 1.

9. Prove or disprove: ∀x ∈ Z, x ≤ 1→ |4x− 9| > 1.
The statement is true. We must begin by letting x ∈ Z be arbitrary.

SOLUTION 1: Direct proof. Assume x ≤ 1. Hence 4x ≤ 4 · 1 = 4, and 4x− 9 ≤ 4− 9 = −5.
In particular, 4x− 9 < 0, so |4x− 9| = −(4x− 9) ≥ −(−5) = 5 > 1. Putting it all together,
|4x− 9| > 1.

SOLUTION 2: Contrapositive proof. Assume that |4x − 9| ≤ 1, i.e. −1 ≤ 4x − 9 ≤ 1. We
add 9 to get 8 ≤ 4x ≤ 10, then divide by 4 to get 2 ≤ x ≤ 2.5. Since x ∈ Z, we conclude that
x = 2. Now 2 > 1, i.e. x > 1.

SOLUTION 3: Proof by cases. Case x > 1: The implication is true vacuously.
Case x ≤ 1: Proceed as in Solution 1. 4x ≤ 4 ·1 = 4, then 4x−9 ≤ 4−9 = −5. In particular,
4x − 9 < 0, so |4x − 9| = −(4x − 9) ≥ −(−5) = 5 > 1. Putting it all together, |4x − 9| > 1.
Now the implication is true trivially.

10. Prove or disprove: ∀x ∈ Z, |4x− 9| > 1→ x ≤ 1.
The statement is false, and requires a counterexample. Hence we need an explicit, specific
x? ∈ Z where ¬(p(x?)→ q(x?)) holds, i.e. p(x?) ∧ ¬q(x?).

Take x? = 10. We have |4x? − 9| = |40− 9| = |31| = 31 > 1, but also x? = 10 6≤ 1.


