1.

MATH 245 S23, Exam 1 Solutions

Carefully define the following terms: odd, predicate.

Let n be an integer. We call n odd if there exists some integer m satisfying n = 2m + 1. A
predicate is a collection of propositions, indexed by one or more free variables, each drawn
from its domain.

Carefully state the following theorems: Division Algorithm Theorem, Conditional Interpreta-

tion Theorem.
The Division Algorithm Theorem says: For any integers a, b with b > 1, there are unique inte-

gers q, 1 satisfying a = bg + r and 0 < r < b. The Conditional Interpretation theorem states:
for any propositions p, q, we have p — ¢ = q V —p.

Without using truth tables, prove: For all propositions p, ¢, we have (p — ¢) A (p — —¢q) = —p.

METHOD 1: Use Theorem 3.2, i.e. prove - and - separately then combine to get =.

(a) Suppose first that (p — q) A (p — —q) is true. By simplification twice, we get p — ¢ and
p — —q. Two cases: Case p is false. Then —p is true, and we are done. Case p is true. Then
by modus ponens twice, we get both ¢ and —¢, which is impossible. Hence —p is true.

(b) Suppose now that —p is true. By addition ¢ V —p is true. By conditional interpretation
p — qis true. We do this again: by addition (—q)V—p is true, and by conditional interpretation
p — —q is true. By conjunction (p — ¢) A (p — —q) is true.

METHOD 2: Chain of logical equivalences. Each step must be justified for full credit.

(p = )N\ — —q) = (gV-p)A((=g)V-p) = ((-p)Va)A((=p)V—q) = (—p)V(gA—q) = (-p)VF
The first = is from conditional interpretation twice. The second = is from the commutativity
theorem twice. The third = is from the distributivity theorem (backwards). The fourth = is
from a theorem in the book (Thm 2.7f). Lastly, (—p) V F F —p by disjunctive syllogism, and
—pt (=p) V F by addition.

METHOD 3: Working through four cases in detail using words (e.g. Suppose p is T and ¢ is
F, then p — ¢ is F, etc.) is not technically using a truth table, so if all the details are present
this rather long solution would also earn full points. My mistake — instead of “without truth
tables” I should have written “using semantic theorems”.

Use a truth table to help prove: For all propositions p, ¢, we have (p — ¢q) A (p — —¢q) = —p.
In this truth table, the third and seventh columns agree, which proves the desired conclusion.
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Let a,b,c € Z. Suppose that a < b and 0 < ¢. Prove that ac < be.

Because a < b, we must have b — a € Ny. Because 0 < ¢, we must have ¢ = ¢ — 0 € Ny. The
product of two whole numbers is a whole number, so (b — a)c € Ny. Multiplying out, we get
bc — ac € Ny. Hence, ac < be.

For arbitrary n € Ny, calculate and simplify %
Using the definition of factorial twice, we have E:Iig: = W f;’)ffn);zl) = w +2)!((7:L Jfg)!(n =

1

[CESICEDE If desired, this can be expanded as

1
n24+Tn+12°



7.

10.

Simplify the following expression as much as possible, where only basic propositions are negated.

Be sure to justify every step.  =(pV =(pV =(qVr)))

Applying De Morgan’s law to the outermost —, we get (—p) A =—=(p V =(q V r))).
Applying Double Negation, we get (—p) A (pV —(g V 1))).
Applying De Morgan’s law to the innermost —, we get (—p) A (p V ((—=q) A (—r))).

NOTE: Applying Disjunctive Syllogism would give (—¢q) A (—r); however, this is not logically
equivalent to the previous step, so is not a correct simplification. (—p) A (=¢) A (—r) would
be correct, but is tricky to justify.

Prove or disprove: Vo € Z, |4z —9| > 1.

The statement is false, and requires a counterexample. Take z* = 2. We have |42* — 9| =
I8 —9| =|—1| =1, and 1 # 1. Hence for * = 2, we have |4z* — 9| # 1.

Prove or disprove: Vo € Z, x <1 — |4 — 9| > 1.
The statement is true. We must begin by letting € Z be arbitrary.

SOLUTION 1: Direct proof. Assume x < 1. Hence 4 <4-1=4,and 4z —9 <4 -9 = -5,
In particular, 4 — 9 < 0, so |4z — 9| = —(42 — 9) > —(—5) = 5 > 1. Putting it all together,
|4z — 9| > 1.

SOLUTION 2: Contrapositive proof. Assume that [4z — 9] < 1,ie. —1 <4z —9 <1. We
add 9 to get 8 < 4z < 10, then divide by 4 to get 2 < x < 2.5. Since x € Z, we conclude that
r=2. Now 2> 1, ie x> 1.

SOLUTION 3: Proof by cases. Case x > 1: The implication is true vacuously.

Case © < 1: Proceed as in Solution 1. 42 < 4-1 =4, then 40 —9 < 4—9 = —5. In particular,
4z —9 <0, so [4z — 9| = —(4x — 9) > —(—5) = 5 > 1. Putting it all together, |4z — 9] > 1.
Now the implication is true trivially.

Prove or disprove: Vx € Z, |4z — 9| > 1 — 2 < 1.
The statement is false, and requires a counterexample. Hence we need an explicit, specific
x* € Z where —(p(z*) — g(x*)) holds, i.e. p(x*) A =g(x*).

Take x* = 10. We have |[4x* — 9| = |40 — 9| = |31| = 31 > 1, but also z* = 10 £ 1.



